ugui/src/renderer.c3

871 lines
26 KiB
Plaintext

module idlist{Type};
// extends the List type to search elements that have a type.id property
// TODO: check that type has an id
import std::collections::list;
alias IdList = List{Type};
macro Type* IdList.get_from_name(&self, String name)
{
return self.get_from_id(name.hash());
}
macro Type* IdList.get_from_id(&self, id)
{
foreach(&s: self) {
if (s.id == id) {
return s;
}
}
return null;
}
module sdlrenderer::ren;
// 2D renderer for ugui, based on SDL3 using the new GPU API
import std::io;
import std::core::mem;
import sdl3::sdl;
import idlist;
import ugui;
struct Shader {
sdl::GPUShader* frag;
sdl::GPUShader* vert;
ugui::Id id;
}
struct Pipeline {
sdl::GPUGraphicsPipeline* pipeline;
ugui::Id id;
}
struct Texture {
sdl::GPUTexture* texture;
sdl::GPUSampler* sampler;
ushort width, height;
ugui::Id id;
}
// The GPU buffers that contain quad info, the size is determined by MAX_QUAD_BATCH
const int MAX_QUAD_BATCH = 256;
struct QuadBuffer {
sdl::GPUBuffer* vert_buf;
sdl::GPUBuffer* idx_buf;
sdl::GPUTransferBuffer* transfer_buffer;
bool initialized;
int count;
int off; // the offset to draw from
}
alias ShaderList = IdList{Shader};
alias PipelineList = IdList{Pipeline};
alias TextureList = IdList{Texture};
struct Renderer {
sdl::Window* win;
sdl::GPUDevice* gpu;
sdl::GPURenderPass* render_pass;
sdl::GPUTexture* swapchain_texture;
sdl::GPUCommandBuffer* render_cmdbuf;
QuadBuffer quad_buffer;
ShaderList shaders;
PipelineList pipelines;
TextureList textures;
Id sprite_atlas_id;
Id font_atlas_id;
}
// how each vertex is represented in the gpu
struct Vertex @packed {
struct pos {
short x, y;
}
struct uv {
short u, v;
}
struct col { // FIXME: this is shit
union {
char r, g, b, a;
char[4] arr;
uint u;
}
}
}
struct Quad @packed {
struct vertices {
Vertex v1,v2,v3,v4;
}
struct indices {
short i1,i2,i3,i4,i5,i6;
}
}
struct ViewsizeUniform @align(16) {
int w, h;
}
const int DEBUG = 1;
const bool CYCLE = true;
fn void Renderer.init(&self, ZString title, uint width, uint height)
{
// set wayland hint automagically
$if DEBUG == 0:
bool has_wayland = false;
for (int i = 0; i < sdl::get_num_video_drivers(); i++) {
ZString driver = sdl::get_video_driver(i);
if (driver.str_view() == "wayland") {
has_wayland = true;
break;
}
}
if (has_wayland) {
sdl::set_hint(sdl::HINT_VIDEO_DRIVER, "wayland");
}
$else
// in debug mode set the video driver to X11 because renderdoc
// doesn't support debugging in wayland yet.
sdl::set_hint(sdl::HINT_VIDEO_DRIVER, "x11");
sdl::set_hint(sdl::HINT_RENDER_GPU_DEBUG, "1");
$endif
// init subsystems
if (!sdl::init(INIT_VIDEO)) {
unreachable("sdl error: %s", sdl::get_error());
}
// create the window
self.win = sdl::create_window(title, width, height, WINDOW_RESIZABLE|WINDOW_VULKAN);
if (self.win == null) {
unreachable("sdl error: %s", sdl::get_error());
}
// get the gpu device handle
self.gpu = sdl::create_gpu_device(GPU_SHADERFORMAT_SPIRV, true, "vulkan");
if (self.gpu == null) {
unreachable("failed to create gpu device: %s", sdl::get_error());
}
if (!sdl::claim_window_for_gpu_device(self.gpu, self.win)) {
unreachable("failed to claim window for use with gpu: %s", sdl::get_error());
}
//
// initialize the quad buffer
// ==========================
self.quad_buffer.vert_buf = sdl::create_gpu_buffer(self.gpu,
&&(GPUBufferCreateInfo){.usage = GPU_BUFFERUSAGE_VERTEX, .size = Quad.vertices.sizeof * MAX_QUAD_BATCH}
);
if (self.quad_buffer.vert_buf == null) {
unreachable("failed to initialize quad buffer (vertex): %s", sdl::get_error());
}
self.quad_buffer.idx_buf = sdl::create_gpu_buffer(self.gpu,
&&(GPUBufferCreateInfo){.usage = GPU_BUFFERUSAGE_INDEX, .size = Quad.indices.sizeof * MAX_QUAD_BATCH}
);
if (self.quad_buffer.idx_buf == null) {
unreachable("failed to initialize quad buffer (index): %s", sdl::get_error());
}
self.quad_buffer.transfer_buffer = sdl::create_gpu_transfer_buffer(self.gpu,
&&(GPUTransferBufferCreateInfo){.usage = GPU_TRANSFERBUFFERUSAGE_UPLOAD, .size = Quad.sizeof}
);
if (self.quad_buffer.transfer_buffer == null) {
unreachable("failed to create gpu transfer buffer: %s", sdl::get_error());
}
self.quad_buffer.initialized = true;
}
fn void Renderer.free(&self)
{
foreach (&s: self.shaders) {
sdl::release_gpu_shader(self.gpu, s.frag);
sdl::release_gpu_shader(self.gpu, s.vert);
}
self.shaders.free();
foreach (&p: self.pipelines) {
sdl::release_gpu_graphics_pipeline(self.gpu, p.pipeline);
}
self.pipelines.free();
// FIXME: release the quad buffer
sdl::release_window_from_gpu_device(self.gpu, self.win);
sdl::destroy_gpu_device(self.gpu);
sdl::destroy_window(self.win);
sdl::quit();
}
fn void Renderer.resize_window(&self, uint width, uint height)
{
sdl::set_window_size(self.win, width, height);
}
fn void Renderer.get_window_size(&self, int* width, int* height)
{
sdl::get_window_size_in_pixels(self.win, width, height);
}
// Both the vertex shader and fragment shader have an implicit uniform buffer at binding 0 that
// contains the viewport size. It is populated automatically at every begin_render() call
fn void Renderer.load_spirv_shader_from_mem(&self, String name, char[] vert_code, char[] frag_code, uint textures, uint uniforms)
{
Shader s;
s.id = name.hash();
if (vert_code.len == 0 || frag_code.len == 0) {
unreachable("vertex shader and fragment shader cannot be empty");
}
if (vert_code.len > 0) {
// FIXME: these should be passed by parameter and/or automatically determined by parsing
// the shader code
GPUShaderCreateInfo shader_info = {
.code = vert_code.ptr,
.code_size = vert_code.len,
.entrypoint = "main",
.format = GPU_SHADERFORMAT_SPIRV,
.stage = GPU_SHADERSTAGE_VERTEX,
.num_samplers = 0,
.num_uniform_buffers = 1+uniforms,
.num_storage_buffers = 0,
.num_storage_textures = 0
};
s.vert = sdl::create_gpu_shader(self.gpu, &shader_info);
if (s.vert == null) {
unreachable("failed to create gpu vertex shader: %s", sdl::get_error());
}
}
if (frag_code.len > 0) {
// FIXME: these should be passed by parameter and/or automatically determined by parsing
// the shader code
GPUShaderCreateInfo shader_info = {
.code = frag_code.ptr,
.code_size = frag_code.len,
.entrypoint = "main",
.format = GPU_SHADERFORMAT_SPIRV,
.stage = GPU_SHADERSTAGE_FRAGMENT,
.num_samplers = textures,
.num_uniform_buffers = 1,
.num_storage_buffers = 0,
.num_storage_textures = 0
};
s.frag = sdl::create_gpu_shader(self.gpu, &shader_info);
if (s.frag == null) {
unreachable("failed to create gpu fragment shader: %s", sdl::get_error());
}
}
// push the shader into the list
self.shaders.push(s);
}
fn void Renderer.load_spirv_shader_from_file(&self, String name, String vert_path, String frag_path, uint textures, uint uniforms)
{
if (vert_path == "" || frag_path == "") {
unreachable("need both a vertex shader and fragment shader path");
}
char[] vert_code;
char[] frag_code;
// create vertex shader
vert_code = mem::new_array(char, file::get_size(vert_path)!!+1);
file::load_buffer(vert_path, vert_code)!!;
defer mem::free(vert_code);
// create fragment shader
frag_code = mem::new_array(char, file::get_size(frag_path)!!+1);
file::load_buffer(frag_path, frag_code)!!;
defer mem::free(frag_code);
self.load_spirv_shader_from_mem(name, vert_code, frag_code, textures, uniforms);
}
// this describes what we want to draw, since for drawing different things we have to change
// the GPUPrimitiveType and GPURasterizerState for the pipeline.
enum PipelineType : (GPUPrimitiveType primitive_type, GPURasterizerState raster_state) {
RECT = {GPU_PRIMITIVETYPE_TRIANGLELIST, {.fill_mode = GPU_FILLMODE_FILL, .cull_mode = GPU_CULLMODE_NONE, .front_face = GPU_FRONTFACE_COUNTER_CLOCKWISE}},
SPRITE = {GPU_PRIMITIVETYPE_TRIANGLELIST, {.fill_mode = GPU_FILLMODE_FILL, .cull_mode = GPU_CULLMODE_NONE, .front_face = GPU_FRONTFACE_COUNTER_CLOCKWISE}},
LINE = {GPU_PRIMITIVETYPE_LINELIST, {.fill_mode = GPU_FILLMODE_LINE, .cull_mode = GPU_CULLMODE_NONE, .front_face = GPU_FRONTFACE_COUNTER_CLOCKWISE}},
}
// create a graphics pipeline to draw to the window using a set of vertex/fragment shaders
// the pipeline is pushed into the renderer's pipeline list and it will have the same id as
// the shader set.
fn void Renderer.create_pipeline(&self, String shader_name, PipelineType type)
{
Shader *s = self.shaders.get_from_name(shader_name);
if (s == null) {
unreachable("error in creating pipeline: no shader named %s", shader_name);
}
GPUGraphicsPipelineCreateInfo ci = {
.vertex_shader = s.vert,
.fragment_shader = s.frag,
// This structure specifies how the vertex buffer looks in memory, what it contains
// and what is passed where to the gpu. Each vertex has three attributes, position,
// color and uv coordinates. Since this is a 2D pixel-based renderer the position
// is represented by two floats, the color as 32 bit rgba and the uv also as intgers.
.vertex_input_state = {
// the description of each vertex buffer, for now I use only one buffer
.vertex_buffer_descriptions = (GPUVertexBufferDescription[]){{
.slot = 0,
.pitch = Vertex.sizeof,
.input_rate = GPU_VERTEXINPUTRATE_VERTEX,
.instance_step_rate = 0,
}},
.num_vertex_buffers = 1,
// the description of each vertex, each vertex has three properties
.vertex_attributes = (GPUVertexAttribute[]){
{ // at location zero there is the position of the vertex
.location = 0,
.buffer_slot = 0, // only one buffer so always slot zero
.format = GPU_VERTEXELEMENTFORMAT_SHORT2,
.offset = Vertex.pos.offsetof,
},
{ // at location one there are the uv coordinates
.location = 1,
.buffer_slot = 0,
.format = GPU_VERTEXELEMENTFORMAT_SHORT2,
.offset = Vertex.uv.offsetof,
},
{ // at location two there is the color
.location = 2,
.buffer_slot = 0,
.format = GPU_VERTEXELEMENTFORMAT_UBYTE4, // 4x8bit unsigned rgba format
.offset = Vertex.col.offsetof,
}
},
.num_vertex_attributes = 3,
},
// the pipeline's primitive type and rasterizer state differs based on what needs to
// be drawn
.primitive_type = type.primitive_type,
.rasterizer_state = type.raster_state,
.multisample_state = {}, // no multisampling, all zeroes
.depth_stencil_state = {}, // no stencil test, all zeroes
.target_info = { // the target (texture) description
.color_target_descriptions = (GPUColorTargetDescription[]){{
// rendering happens to the window, so get it's format
.format = sdl::get_gpu_swapchain_texture_format(self.gpu, self.win),
.blend_state = {
// alpha blending on everything
// https://en.wikipedia.org/wiki/Alpha_compositing
.src_color_blendfactor = GPU_BLENDFACTOR_SRC_ALPHA,
.dst_color_blendfactor = GPU_BLENDFACTOR_ONE_MINUS_SRC_ALPHA,
.color_blend_op = GPU_BLENDOP_ADD,
.src_alpha_blendfactor = GPU_BLENDFACTOR_SRC_ALPHA,
.dst_alpha_blendfactor = GPU_BLENDFACTOR_ONE_MINUS_SRC_ALPHA,
.alpha_blend_op = GPU_BLENDOP_ADD,
.enable_blend = true,
// color write mask is not enabled so all rgba channels are written to
},
}},
.num_color_targets = 1,
.depth_stencil_format = {}, // FIXME: no stencil, no depth buffering
.has_depth_stencil_target = false,
},
};
// create the pipeline and add it to the pipeline list
Pipeline p = {
.id = s.id,
.pipeline = sdl::create_gpu_graphics_pipeline(self.gpu, &ci),
};
if (p.pipeline == null) {
unreachable("failed to create pipeline (shaders: %s, type: %s): %s", shader_name, type.nameof, sdl::get_error());
}
self.pipelines.push(p);
}
// NOTE: with TEXTUREUSAGE_SAMPLER the texture format cannot be intger _UINT so it has to be nermalized
enum TextureType : (GPUTextureFormat format) {
FULL_COLOR = GPU_TEXTUREFORMAT_R8G8B8A8_UNORM,
JUST_ALPHA = GPU_TEXTUREFORMAT_R8_UNORM
}
macro void Renderer.new_texture(&self, name_or_id, TextureType type, char[] pixels, uint width, uint height)
{
$switch $typeof(name_or_id):
$case usz: return self.new_texture_by_id(id, type, pixels, width, height);
$case String: return self.new_texture_by_id(name_or_id.hash(), type, pixels, width, height);
$default: unreachable("texture must have a name (String) or an id (usz)");
$endswitch
}
macro void Renderer.update_texture(&self, name_or_id, char[] pixels, uint width, uint height, uint x = 0, uint y = 0)
{
$switch $typeof(name_or_id):
$case usz: return self.update_texture_by_id(name_or_id, pixels, width, height, x, y);
$case String: return self.update_texture_by_id(name_or_id.hash(), pixels, width, height, x, y);
$default: unreachable("texture must have a name (String) or an id (usz)");
$endswitch
}
// create a new gpu texture from a pixel buffer, the format has to be specified
// the new texture s given an id and pushed into a texture list
fn void Renderer.new_texture_by_id(&self, Id id, TextureType type, char[] pixels, uint width, uint height)
{
// the texture description
GPUTextureCreateInfo tci = {
.type = GPU_TEXTURETYPE_2D,
.format = type.format,
// all textures are used with samplers, which means read-only textures that contain data to be sampled
.usage = GPU_TEXTUREUSAGE_SAMPLER,
.width = width,
.height = height,
.layer_count_or_depth = 1,
.num_levels = 1, // no mip maps so just one level
// .sample_count not used since the texture is not a render target
};
GPUTexture* texture = sdl::create_gpu_texture(self.gpu, &tci);
if (texture == null) {
unreachable("failed to create texture (id: %s, type: %s): %s", id, type.nameof, sdl::get_error());
}
// the sampler description, how the texture should be sampled
GPUSamplerCreateInfo sci = {
.min_filter = GPU_FILTER_LINEAR, // linear interpolation for textures
.mag_filter = GPU_FILTER_LINEAR,
.mipmap_mode = GPU_SAMPLERMIPMAPMODE_NEAREST,
.address_mode_u = GPU_SAMPLERADDRESSMODE_REPEAT, // tiling textures
.address_mode_v = GPU_SAMPLERADDRESSMODE_REPEAT,
.address_mode_w = GPU_SAMPLERADDRESSMODE_REPEAT,
// everything else is not used and not needed
};
GPUSampler* sampler = sdl::create_gpu_sampler(self.gpu, &sci);
if (sampler == null) {
unreachable("failed to create sampler (texture id: %s, type: %s): %s", id, type.nameof, sdl::get_error());
}
Texture t = {
.id = id,
.texture = texture,
.sampler = sampler,
};
self.textures.push(t);
// upload the texture data
self.update_texture_by_id(id, pixels, width, height, 0, 0);
}
fn void Renderer.update_texture_by_id(&self, Id id, char[] pixels, uint width, uint height, uint x, uint y)
{
Texture* t = self.textures.get_from_id(id);
if (t == null || t.texture == null) {
unreachable("failed updating texture: no texture with id %s", id);
}
GPUTexture* texture = t.texture;
// FIXME: do a better job at validating the copy
if (x > t.width || y > t.height) {
unreachable("failed updating texture: attempting to copy outside of the texture region");
}
// upload image data
GPUCommandBuffer* cmdbuf = sdl::acquire_gpu_command_buffer(self.gpu);
if (cmdbuf == null) {
unreachable("failed to upload texture data at acquiring command buffer: %s", sdl::get_error());
}
GPUCopyPass* copypass = sdl::begin_gpu_copy_pass(cmdbuf);
if (copypass == null) {
unreachable("failed to upload texture data at beginning copy pass: %s", sdl::get_error());
}
GPUTransferBuffer* buf = sdl::create_gpu_transfer_buffer(self.gpu,
&&(GPUTransferBufferCreateInfo){.usage = GPU_TRANSFERBUFFERUSAGE_UPLOAD, .size = pixels.len}
);
if (buf == null) {
unreachable("failed to upload texture data at creating the transfer buffer: %s", sdl::get_error());
}
char* gpu_mem = (char*)sdl::map_gpu_transfer_buffer(self.gpu, buf, CYCLE);
if (gpu_mem == null) {
unreachable("failed to upload texture data at mapping the transfer buffer: %s", sdl::get_error());
}
// copy the data to the driver's memory
gpu_mem[:pixels.len] = pixels[..];
sdl::unmap_gpu_transfer_buffer(self.gpu, buf);
// upload the data to gpu memory
sdl::upload_to_gpu_texture(copypass,
&&(GPUTextureTransferInfo){.transfer_buffer = buf, .offset = 0},
&&(GPUTextureRegion){.texture = texture, .x = x, .y = y, .w = width, .h = height, .d = 1},
false
);
sdl::end_gpu_copy_pass(copypass);
if (!sdl::submit_gpu_command_buffer(cmdbuf)) {
unreachable("failed to upload texture data at command buffer submission: %s", sdl::get_error());
}
sdl::release_gpu_transfer_buffer(self.gpu, buf);
}
fn bool Renderer.push_sprite(&self, short x, short y, short w, short h, short u, short v, uint color = 0xffffffff)
{
Quad quad;
/* v1 v4
* +-------------+
* | _/|
* | _/ |
* | 1 _/ |
* | _/ |
* | _/ |
* | _/ 2 |
* |/ |
* +-------------+
* v2 v3
*/
quad.vertices.v1 = {.pos = {.x = x, .y = y}, .uv = {.u = u, .v = v}, .col.u = color};
quad.vertices.v2 = {.pos = {.x = x, .y = y+h}, .uv = {.u = u, .v = v+h}, .col.u = color};
quad.vertices.v3 = {.pos = {.x = x+w, .y = y+h}, .uv = {.u = u+w, .v = v+h}, .col.u = color};
quad.vertices.v4 = {.pos = {.x = x+w, .y = y}, .uv = {.u = u+w, .v = v}, .col.u = color};
// triangle 1 indices
quad.indices.i1 = 0; // v1
quad.indices.i2 = 1; // v2
quad.indices.i3 = 3; // v4
// triangle 2 indices
quad.indices.i4 = 1; // v2
quad.indices.i5 = 2; // v3
quad.indices.i6 = 3; // v4
return self.upload_quad(&quad);
}
// Push a quad into the quad buffer, return true on success and false on failure
fn bool Renderer.push_quad(&self, short x, short y, short w, short h, uint color, ushort radius = 0)
{
Quad quad;
/* v1 v4
* +-------------+
* | _/|
* | _/ |
* | 1 _/ |
* | _/ |
* | _/ |
* | _/ 2 |
* |/ |
* +-------------+
* v2 v3
*/
// the wanted radius is pushed into the uv coordinates, the vertex shader then extracts the absolute value
// and passes it to the fragment shader, then it uses the sign to give the fragment shader local coordinates
// into the quad.
quad.vertices.v1 = {.pos = {.x = x, .y = y}, .uv = {.u = -radius, .v = +radius}, .col.u = color};
quad.vertices.v2 = {.pos = {.x = x, .y = y+h}, .uv = {.u = -radius, .v = -radius}, .col.u = color};
quad.vertices.v3 = {.pos = {.x = x+w, .y = y+h}, .uv = {.u = +radius, .v = -radius}, .col.u = color};
quad.vertices.v4 = {.pos = {.x = x+w, .y = y}, .uv = {.u = +radius, .v = +radius}, .col.u = color};
// triangle 1 indices
quad.indices.i1 = 0; // v1
quad.indices.i2 = 1; // v2
quad.indices.i3 = 3; // v4
// triangle 2 indices
quad.indices.i4 = 1; // v2
quad.indices.i5 = 2; // v3
quad.indices.i6 = 3; // v4
return self.upload_quad(&quad);
}
fn bool Renderer.upload_quad(&self, Quad* source_quad)
{
if (self.quad_buffer.count >= MAX_QUAD_BATCH || source_quad == null) {
return false;
}
QuadBuffer* qb = &self.quad_buffer;
// upload the quad data to the gpu
if (qb.initialized == false) {
unreachable("quad buffer not initialized");
}
Quad* quad = (Quad*)sdl::map_gpu_transfer_buffer(self.gpu, qb.transfer_buffer, CYCLE);
if (quad == null) {
unreachable("failed to map gpu transfer buffer: %s", sdl::get_error());
}
*quad = *source_quad;
sdl::unmap_gpu_transfer_buffer(self.gpu, qb.transfer_buffer);
GPUCommandBuffer* cmd = sdl::acquire_gpu_command_buffer(self.gpu);
if (cmd == null) {
unreachable("failed to upload quad at acquiring command buffer: %s", sdl::get_error());
}
GPUCopyPass* cpy = sdl::begin_gpu_copy_pass(cmd);
// upload vertices
sdl::upload_to_gpu_buffer(cpy,
&&(GPUTransferBufferLocation){.transfer_buffer = qb.transfer_buffer, .offset = Quad.vertices.offsetof},
&&(GPUBufferRegion){.buffer = qb.vert_buf, .offset = qb.count * Quad.vertices.sizeof, .size = Quad.vertices.sizeof},
false
);
// upload indices
sdl::upload_to_gpu_buffer(cpy,
&&(GPUTransferBufferLocation){.transfer_buffer = qb.transfer_buffer, .offset = Quad.indices.offsetof},
&&(GPUBufferRegion){.buffer = qb.idx_buf, .offset = qb.count * Quad.indices.sizeof, .size = Quad.indices.sizeof},
false
);
sdl::end_gpu_copy_pass(cpy);
if (!sdl::submit_gpu_command_buffer(cmd)) {
unreachable("failed to upload quads at submit command buffer: %s", sdl::get_error());
}
qb.count++;
return true;
}
// draw all quads in the quad buffer, since uniforms are per-drawcall it makes no sense
// to draw them one a the time
fn void Renderer.draw_quads(&self)
{
QuadBuffer* qb = &self.quad_buffer;
if (qb.off == qb.count) return;
sdl::bind_gpu_vertex_buffers(self.render_pass, 0, (GPUBufferBinding[]){{.buffer = qb.vert_buf, .offset = qb.off*Quad.vertices.sizeof}}, 1);
sdl::bind_gpu_index_buffer(self.render_pass, &&(GPUBufferBinding){.buffer = qb.idx_buf, .offset = qb.off*Quad.indices.sizeof}, GPU_INDEXELEMENTSIZE_16BIT);
// we need instancing to not do this
for (int i = 0; i < qb.count - qb.off; i++) {
sdl::draw_gpu_indexed_primitives(self.render_pass, 6, 1, i*6, i*4, 0);
}
qb.off = qb.count;
}
fn void Renderer.reset_quads(&self)
{
self.quad_buffer.count = 0;
self.quad_buffer.off = 0;
}
fn void Renderer.begin_render(&self, bool clear_screen)
{
self.render_cmdbuf = sdl::acquire_gpu_command_buffer(self.gpu);
sdl::wait_and_acquire_gpu_swapchain_texture(self.render_cmdbuf, self.win, &self.swapchain_texture, null, null);
// push the window size as a uniform
// TODO: maybe make this configurable and/or add more things
ViewsizeUniform v;
self.get_window_size(&v.w, &v.h);
sdl::push_gpu_vertex_uniform_data(self.render_cmdbuf, 0, &v, ViewsizeUniform.sizeof);
sdl::push_gpu_fragment_uniform_data(self.render_cmdbuf, 0, &v, ViewsizeUniform.sizeof);
if (clear_screen) {
GPURenderPass* pass = sdl::begin_gpu_render_pass(self.render_cmdbuf,
&&(GPUColorTargetInfo){
.texture = self.swapchain_texture,
.mip_level = 0,
.layer_or_depth_plane = 0,
.clear_color = {.r = 1.0, .g = 0.0, .b = 1.0, .a = 1.0},
.load_op = GPU_LOADOP_CLEAR, // clear the screen at the start of the render pass
.store_op = GPU_STOREOP_STORE,
.resolve_texture = null,
.resolve_mip_level = 0,
.resolve_layer = 0,
.cycle = false,
.cycle_resolve_texture = false
},
1,
null // huh
);
if (pass == null) {
unreachable("render pass creation went wrong: %s", sdl::get_error());
}
sdl::end_gpu_render_pass(pass);
}
}
fn void Renderer.end_render(&self)
{
sdl::submit_gpu_command_buffer(self.render_cmdbuf);
self.reset_quads();
}
fn void Renderer.start_render_pass(&self, String pipeline_name)
{
self.render_pass = sdl::begin_gpu_render_pass(self.render_cmdbuf,
&&(GPUColorTargetInfo){
.texture = self.swapchain_texture,
.mip_level = 0,
.layer_or_depth_plane = 0,
.clear_color = {.r = 0.0, .g = 0.0, .b = 0.0, .a = 1.0},
.load_op = GPU_LOADOP_DONT_CARE,
.store_op = GPU_STOREOP_STORE,
.resolve_texture = null,
.resolve_mip_level = 0,
.resolve_layer = 0,
.cycle = false,
.cycle_resolve_texture = false
},
1,
null // huh
);
if (self.render_pass == null) {
unreachable("render pass creation went wrong: %s", sdl::get_error());
}
sdl::GPUGraphicsPipeline* p;
p = self.pipelines.get_from_name(pipeline_name).pipeline;
if (p == null) {
unreachable("no pipeline");
}
sdl::bind_gpu_graphics_pipeline(self.render_pass, p);
}
fn void Renderer.end_render_pass(&self)
{
sdl::end_gpu_render_pass(self.render_pass);
}
fn void Renderer.bind_texture(&self, String texture_name)
{
ren::Texture* tx = self.textures.get_from_name(texture_name);
sdl::bind_gpu_fragment_samplers(self.render_pass, 0,
(GPUTextureSamplerBinding[]){{.texture = tx.texture, .sampler = tx.sampler}}, 1
);
}
fn void Renderer.set_scissor(&self, uint x, uint y, uint w, uint h)
{
sdl::set_gpu_scissor(self.render_pass, &&(sdl::Rect){x,y,w,h});
}
fn void Renderer.reset_scissor(&self)
{
int w, h;
sdl::get_window_size(self.win, &w, &h);
self.set_scissor(0, 0, w, h);
}
/// === NOTES ===
/* 1. The uniform data is per-render pass. So you can do:
* - push uniform
* - draw 1
* - draw 2
* But not:
* - push uniform
* - draw
* - push new uniform
* - draw
* And not even:
* - draw
* - push uniform
* - draw
*
* 2. The GPU buffers are read per-command-buffer and not per
* render pass. So I cannot override an element in the buffer
* before submitting the command buffer.
*/
/// === END NOTES ===
fn void Renderer.render_ugui(&self, CmdQueue* queue)
{
Cmd* last_command;
for (Cmd* cmd; (cmd = queue.dequeue() ?? null) != null;) {
if (last_command == null || last_command.type != cmd.type) {
self.end_command(last_command);
self.begin_command(cmd);
}
switch (cmd.type) {
case CMD_RECT:
CmdRect r = cmd.rect;
self.push_quad(r.rect.x, r.rect.y, r.rect.w, r.rect.h, r.color.to_uint(), r.radius);
case CMD_SPRITE:
// TODO: support hue in sprite
CmdSprite s = cmd.sprite;
self.push_sprite(s.rect.x, s.rect.y, s.texture_rect.w, s.texture_rect.h, s.texture_rect.x, s.texture_rect.y);
case CMD_UPDATE_ATLAS:
// TODO: verify the correct type
CmdUpdateAtlas u = cmd.update_atlas;
char[] pixels = u.raw_buffer[..u.width*u.height*u.bpp];
self.update_texture(u.id, pixels, u.width, u.height);
case CMD_SCISSOR: break; // FIXME: ugui sends a scissor event before any rect event, this cannot be done and needs different handling
ugui::Rect s = cmd.scissor.rect;
self.set_scissor(s.x, s.y, s.w, s.h);
default: unreachable("unknown command: %s", cmd.type);
}
last_command = cmd;
}
self.end_command(last_command);
}
fn void Renderer.begin_command(&self, Cmd* cmd)
{
if (cmd == null) return;
switch (cmd.type) {
case CMD_RECT:
self.start_render_pass("UGUI_PIPELINE_RECT");
case CMD_SPRITE:
// TODO: support multiple sprite and font atlases
CmdSprite s = cmd.sprite;
String pipeline;
String texture;
if (s.texture_id == self.sprite_atlas_id) {
switch (s.type) {
case SPRITE_NORMAL: pipeline = "UGUI_PIPELINE_SPRITE";
case SPRITE_SDF: pipeline = "UGUI_PIPELINE_SPRITE_SDF";
case SPRITE_MSDF: pipeline = "UGUI_PIPELINE_SPRITE_MSDF";
case SPRITE_ANIMATED: unreachable("animated sprtes are unsupported for now");
default: unreachable("unknown sprite type %s", s.type);
}
texture = "icons";
} else if (s.texture_id == self.font_atlas_id) {
pipeline = "UGUI_PIPELINE_FONT";
texture = "font1";
}
self.start_render_pass(pipeline);
self.bind_texture(texture);
case CMD_UPDATE_ATLAS: break;
case CMD_SCISSOR: break;
default: unreachable("unknown command: %s", cmd.type);
}
}
fn void Renderer.end_command(&self, Cmd* cmd)
{
if (cmd == null) return;
switch (cmd.type) {
case CMD_RECT: nextcase;
case CMD_SPRITE:
self.draw_quads();
self.end_render_pass();
case CMD_UPDATE_ATLAS: break;
case CMD_SCISSOR: break;
default: unreachable("unknown command: %s", cmd.type);
}
}