module sdlrenderer::ren; // 2D renderer for ugui, based on SDL3 using the new GPU API // TODO: use unreachable() instead of the combo eprintfn();exit(1); since it does the same thing // but also adds a helpful stack trace import std::io; import std::core::mem; import sdl3::sdl; import libc; import std::collections::list; struct Shader { sdl::GPUShader* frag; sdl::GPUShader* vert; uint id; } struct Pipeline { sdl::GPUGraphicsPipeline* pipeline; uint id; } struct Texture { sdl::GPUTexture* texture; sdl::GPUSampler* sampler; ushort width, height; uint id; } // gpu buffer that contains a single quad struct QuadBuffer { sdl::GPUBuffer* vert_buf; sdl::GPUBuffer* idx_buf; bool initialized; } alias ShaderList = List{Shader}; alias PipelineList = List{Pipeline}; alias TextureList = List{Texture}; struct Renderer { sdl::Window* win; sdl::GPUDevice* gpu; QuadBuffer quad_buffer; ShaderList shaders; PipelineList pipelines; TextureList textures; } // how each vertex is represented in the gpu struct Vertex @packed { struct pos { float x, y; } struct uv { float u, v; } struct col { // FIXME: this is shit union { char r, g, b, a; char[4] arr; uint u; } } } struct Quad @packed { struct vertices { Vertex v1,v2,v3,v4; } struct indices { short i1,i2,i3,i4,i5,i6; } } const int DEBUG = 1; fn void Renderer.init(&self, ZString title) { // set wayland hint automagically $if DEBUG == 0: bool has_wayland = false; for (int i = 0; i < sdl::get_num_video_drivers(); i++) { ZString driver = sdl::get_video_driver(i); if (driver.str_view() == "wayland") { has_wayland = true; break; } } if (has_wayland) { sdl::set_hint(sdl::HINT_VIDEO_DRIVER, "wayland"); } $else sdl::set_hint(sdl::HINT_VIDEO_DRIVER, "x11"); $endif sdl::set_hint(sdl::HINT_RENDER_GPU_DEBUG, "1"); // init subsystems if (!sdl::init(INIT_VIDEO)) { io::eprintfn("sdl error: %s", sdl::get_error()); libc::exit(1); } // create the window self.win = sdl::create_window(title, 640, 480, WINDOW_RESIZABLE|WINDOW_VULKAN); if (self.win == null) { io::eprintfn("sdl error: %s", sdl::get_error()); libc::exit(1); } // get the gpu device handle self.gpu = sdl::create_gpu_device(GPU_SHADERFORMAT_SPIRV, true, "vulkan"); if (self.gpu == null) { io::eprintfn("failed to create gpu device: %s", sdl::get_error()); libc::exit(1); } if (!sdl::claim_window_for_gpu_device(self.gpu, self.win)) { io::eprintfn("failed to claim window for use with gpu: %s", sdl::get_error()); libc::exit(1); } // initialize the quad buffer self.quad_buffer.vert_buf = sdl::create_gpu_buffer(self.gpu, &&(GPUBufferCreateInfo){.usage = GPU_BUFFERUSAGE_VERTEX, .size = Quad.vertices.sizeof} ); if (self.quad_buffer.vert_buf == null) { io::eprintfn("failed to initialize quad buffer (vertex): %s", sdl::get_error()); libc::exit(1); } self.quad_buffer.idx_buf = sdl::create_gpu_buffer(self.gpu, &&(GPUBufferCreateInfo){.usage = GPU_BUFFERUSAGE_INDEX, .size = Quad.indices.sizeof} ); if (self.quad_buffer.idx_buf == null) { io::eprintfn("failed to initialize quad buffer (index): %s", sdl::get_error()); libc::exit(1); } self.quad_buffer.initialized = true; } fn void Renderer.free(&self) { foreach (&s: self.shaders) { sdl::release_gpu_shader(self.gpu, s.frag); sdl::release_gpu_shader(self.gpu, s.vert); } self.shaders.free(); foreach (&p: self.pipelines) { sdl::release_gpu_graphics_pipeline(self.gpu, p.pipeline); } self.pipelines.free(); sdl::release_window_from_gpu_device(self.gpu, self.win); sdl::destroy_gpu_device(self.gpu); sdl::destroy_window(self.win); sdl::quit(); } fn void Renderer.load_spirv_shader_from_mem(&self, String name, char[] vert_code, char[] frag_code, uint textures, uint uniforms) { Shader s; s.id = name.hash(); if (vert_code.len == 0 || frag_code.len == 0) { unreachable("vertex shader and fragment shader cannot be empty"); } if (vert_code.len > 0) { // FIXME: these should be passed by parameter and/or automatically determined by parsing // the shader code GPUShaderCreateInfo shader_info = { .code = vert_code.ptr, .code_size = vert_code.len, .entrypoint = "main", .format = GPU_SHADERFORMAT_SPIRV, .stage = GPU_SHADERSTAGE_VERTEX, .num_samplers = 0, .num_uniform_buffers = uniforms, .num_storage_buffers = 0, .num_storage_textures = 0 }; s.vert = sdl::create_gpu_shader(self.gpu, &shader_info); if (s.vert == null) { io::eprintfn("failed to create gpu vertex shader: %s", sdl::get_error()); libc::exit(1); } } if (frag_code.len > 0) { // FIXME: these should be passed by parameter and/or automatically determined by parsing // the shader code GPUShaderCreateInfo shader_info = { .code = frag_code.ptr, .code_size = frag_code.len, .entrypoint = "main", .format = GPU_SHADERFORMAT_SPIRV, .stage = GPU_SHADERSTAGE_FRAGMENT, .num_samplers = textures, .num_uniform_buffers = 0, .num_storage_buffers = 0, .num_storage_textures = 0 }; s.frag = sdl::create_gpu_shader(self.gpu, &shader_info); if (s.frag == null) { io::eprintfn("failed to create gpu fragment shader: %s", sdl::get_error()); libc::exit(1); } } // push the shader into the list self.shaders.push(s); } fn void Renderer.load_spirv_shader_from_file(&self, String name, String vert_path, String frag_path, uint textures, uint uniforms) { if (vert_path == "" || frag_path == "") { unreachable("need both a vertex shader and fragment shader path"); } char[] vert_code; char[] frag_code; // create vertex shader if (vert_path != "") { vert_code = mem::new_array(char, file::get_size(vert_path)!!+1); file::load_buffer(vert_path, vert_code)!!; } // create fragment shader if (frag_path != "") { frag_code = mem::new_array(char, file::get_size(frag_path)!!+1); file::load_buffer(frag_path, frag_code)!!; } self.load_spirv_shader_from_mem(name, vert_code, frag_code, textures, uniforms); if (vert_code.ptr) mem::free(vert_code); if (frag_code.ptr) mem::free(frag_code); } fn Shader* ShaderList.get_from_name(&self, String name) { uint id = name.hash(); foreach(&s: self) { if (s.id == id) { return s; } } return null; } fn Pipeline* PipelineList.get_from_name(&self, String name) { uint id = name.hash(); foreach(&p: self) { if (p.id == id) { return p; } } return null; } fn Texture* TextureList.get_from_name(&self, String name) { uint id = name.hash(); foreach(&t: self) { if (t.id == id) { return t; } } return null; } // this describes what we want to draw, since for drawing different things we have to change // the GPUPrimitiveType and GPURasterizerState for the pipeline. enum PipelineType : (GPUPrimitiveType primitive_type, GPURasterizerState raster_state) { RECT = {GPU_PRIMITIVETYPE_TRIANGLELIST, {.fill_mode = GPU_FILLMODE_FILL, .cull_mode = GPU_CULLMODE_NONE, .front_face = GPU_FRONTFACE_COUNTER_CLOCKWISE}}, SPRITE = {GPU_PRIMITIVETYPE_TRIANGLELIST, {.fill_mode = GPU_FILLMODE_FILL, .cull_mode = GPU_CULLMODE_NONE, .front_face = GPU_FRONTFACE_COUNTER_CLOCKWISE}}, LINE = {GPU_PRIMITIVETYPE_LINELIST, {.fill_mode = GPU_FILLMODE_LINE, .cull_mode = GPU_CULLMODE_NONE, .front_face = GPU_FRONTFACE_COUNTER_CLOCKWISE}}, } // create a graphics pipeline to draw to the window using a set of vertex/fragment shaders // the pipeline is pushed into the renderer's pipeline list and it will have the same id as // the shader set. fn void Renderer.create_pipeline(&self, String shader_name, PipelineType type) { Shader *s = self.shaders.get_from_name(shader_name); if (s == null) { io::eprintfn("error in creating pipeline: no shader named %s", shader_name); libc::exit(1); } GPUGraphicsPipelineCreateInfo ci = { .vertex_shader = s.vert, .fragment_shader = s.frag, // This structure specifies how the vertex buffer looks in memory, what it contains // and what is passed where to the gpu. Each vertex has three attributes, position, // color and uv coordinates. Since this is a 2D pixel-based renderer the position // is represented by two floats, the color as 32 bit rgba and the uv also as intgers. .vertex_input_state = { // the description of each vertex buffer, for now I use only one buffer .vertex_buffer_descriptions = (GPUVertexBufferDescription[]){{ .slot = 0, .pitch = Vertex.sizeof, .input_rate = GPU_VERTEXINPUTRATE_VERTEX, .instance_step_rate = 0, }}, .num_vertex_buffers = 1, // the description of each vertex, each vertex has three properties .vertex_attributes = (GPUVertexAttribute[]){ { // at location zero there is the position of the vertex .location = 0, .buffer_slot = 0, // only one buffer so always slot zero .format = GPU_VERTEXELEMENTFORMAT_FLOAT2, .offset = Vertex.pos.offsetof, }, { // at location one there are the uv coordinates .location = 1, .buffer_slot = 0, .format = GPU_VERTEXELEMENTFORMAT_FLOAT2, .offset = Vertex.uv.offsetof, }, { // at location two there is the color .location = 2, .buffer_slot = 0, .format = GPU_VERTEXELEMENTFORMAT_UBYTE4, // 4x8bit unsigned rgba format .offset = Vertex.col.offsetof, } }, .num_vertex_attributes = 3, }, // the pipeline's primitive type and rasterizer state differs based on what needs to // be drawn .primitive_type = type.primitive_type, .rasterizer_state = type.raster_state, .multisample_state = {}, // no multisampling, all zeroes .depth_stencil_state = {}, // no stencil test, all zeroes .target_info = { // the target (texture) description .color_target_descriptions = (GPUColorTargetDescription[]){{ // rendering happens to the window, so get it's format .format = sdl::get_gpu_swapchain_texture_format(self.gpu, self.win), .blend_state = { // alpha blending on everything // https://en.wikipedia.org/wiki/Alpha_compositing .src_color_blendfactor = GPU_BLENDFACTOR_SRC_ALPHA, .dst_color_blendfactor = GPU_BLENDFACTOR_ONE_MINUS_SRC_ALPHA, .color_blend_op = GPU_BLENDOP_ADD, .src_alpha_blendfactor = GPU_BLENDFACTOR_SRC_ALPHA, .dst_alpha_blendfactor = GPU_BLENDFACTOR_ONE_MINUS_SRC_ALPHA, .alpha_blend_op = GPU_BLENDOP_ADD, .enable_blend = true, // color write mask is not enabled so all rgba channels are written to }, }}, .num_color_targets = 1, .depth_stencil_format = {}, // FIXME: no stencil, no depth buffering .has_depth_stencil_target = false, }, }; // create the pipeline and add it to the pipeline list Pipeline p = { .id = s.id, .pipeline = sdl::create_gpu_graphics_pipeline(self.gpu, &ci), }; if (p.pipeline == null) { io::eprintfn("failed to create pipeline (shaders: %s, type: %s): %s", shader_name, type.nameof, sdl::get_error()); libc::exit(1); } self.pipelines.push(p); } enum TextureType : (GPUTextureFormat format) { FULL_COLOR = GPU_TEXTUREFORMAT_R8G8B8A8_UINT, JUST_ALPHA = GPU_TEXTUREFORMAT_R8_UINT } // create a new gpu texture from a pixel buffer, the format has to be specified // the new texture s given an id and pushed into a texture list fn void Renderer.new_texture(&self, String name, TextureType type, char[] pixels, ushort width, ushort height) { uint id = name.hash(); // the texture description GPUTextureCreateInfo tci = { .type = GPU_TEXTURETYPE_2D, .format = type.format, // all textures are used with samplers, which means read-only textures that contain data to be sampled .usage = GPU_TEXTUREUSAGE_SAMPLER, .width = width, .height = height, .layer_count_or_depth = 1, .num_levels = 0, // no mip maps // .sample_count not used since the texture is not a render target }; GPUTexture* texture = sdl::create_gpu_texture(self.gpu, &tci); if (texture == null) { io::eprintfn("failed to create texture (name: %s, type: %s): %s", name, type.nameof, sdl::get_error()); libc::exit(1); } // the sampler description, how the texture should be sampled GPUSamplerCreateInfo sci = { .min_filter = GPU_FILTER_LINEAR, // linear interpolation for textures .mag_filter = GPU_FILTER_LINEAR, .mipmap_mode = GPU_SAMPLERMIPMAPMODE_NEAREST, .address_mode_u = GPU_SAMPLERADDRESSMODE_REPEAT, // tiling textures .address_mode_v = GPU_SAMPLERADDRESSMODE_REPEAT, .address_mode_w = GPU_SAMPLERADDRESSMODE_REPEAT, // everything else is not used and not needed }; GPUSampler* sampler = sdl::create_gpu_sampler(self.gpu, &sci); if (sampler == null) { io::eprintfn("failed to create sampler (texture name: %s, type: %s): %s", name, type.nameof, sdl::get_error()); libc::exit(1); } Texture t = { .id = id, .texture = texture, .sampler = sampler, }; self.textures.push(t); // upload the texture data self.update_texture(name, pixels, width, height); } fn void Renderer.update_texture(&self, String name, char[] pixels, ushort width, ushort height, ushort x = 0, ushort y = 0) { Texture* t = self.textures.get_from_name(name); if (t == null || t.texture == null) { io::eprintf("failed updating texture: no texture named %s", name); libc::exit(1); } GPUTexture* texture = t.texture; // FIXME: do a better job at validating the copy if (x > t.width || y > t.height) { io::eprintf("failed updating texture: attempting to copy outside of the texture region", name); libc::exit(1); } // upload image data GPUCommandBuffer* cmdbuf = sdl::acquire_gpu_command_buffer(self.gpu); if (cmdbuf == null) { io::eprintfn("failed to upload texture data at acquiring command buffer: %s", sdl::get_error()); libc::exit(1); } GPUCopyPass* copypass = sdl::begin_gpu_copy_pass(cmdbuf); if (copypass == null) { io::eprintfn("failed to upload texture data at beginning copy pass: %s", sdl::get_error()); libc::exit(1); } GPUTransferBuffer* buf = sdl::create_gpu_transfer_buffer(self.gpu, &&(GPUTransferBufferCreateInfo){.usage = GPU_TRANSFERBUFFERUSAGE_UPLOAD, .size = pixels.len} ); if (buf == null) { io::eprintfn("failed to upload texture data at creating the transfer buffer: %s", sdl::get_error()); libc::exit(1); } char* gpu_mem = (char*)sdl::map_gpu_transfer_buffer(self.gpu, buf, false); if (gpu_mem == null) { io::eprintfn("failed to upload texture data at mapping the transfer buffer: %s", sdl::get_error()); libc::exit(1); } // copy the data to the driver's memory gpu_mem[:pixels.len] = pixels[..]; sdl::unmap_gpu_transfer_buffer(self.gpu, buf); // upload the data to gpu memory sdl::upload_to_gpu_texture(copypass, &&(GPUTextureTransferInfo){.transfer_buffer = buf, .offset = 0}, &&(GPUTextureRegion){.texture = texture, .x = x, .y = y, .w = width, .h = height, .d = 1}, false ); sdl::end_gpu_copy_pass(copypass); if (!sdl::submit_gpu_command_buffer(cmdbuf)) { io::eprintfn("failed to upload texture data at command buffer submission: %s", sdl::get_error()); libc::exit(1); } sdl::release_gpu_transfer_buffer(self.gpu, buf); } macro void Vertex.norm(&p, float w, float h) { p.pos.x = p.pos.x * 2.0 / w - 1.0; p.pos.y = -(p.pos.y * 2.0 / h - 1.0); } // an highly inefficient way to draw a single quad, no batching, per-quad upload fn void Renderer.draw_rect(&self, short x, short y, short w, short h, uint color, String shader_name) { // upload the quad data to the gpu if (self.quad_buffer.initialized == false) { io::eprintfn("quad buffer not initialized"); libc::exit(1); } GPUTransferBuffer* buf = sdl::create_gpu_transfer_buffer(self.gpu, &&(GPUTransferBufferCreateInfo){.usage = GPU_TRANSFERBUFFERUSAGE_UPLOAD, .size = Quad.sizeof} ); if (buf == null) { io::eprintfn("failed to create gpu transfer buffer: %s", sdl::get_error()); libc::exit(1); } Quad* quad = (Quad*)sdl::map_gpu_transfer_buffer(self.gpu, buf, false); if (quad == null) { io::eprintfn("failed to map gpu transfer buffer: %s", sdl::get_error()); libc::exit(1); } /* v1 v4 * +-------------+ * | _/| * | _/ | * | 1 _/ | * | _/ | * | _/ | * | _/ 2 | * |/ | * +-------------+ * v2 v3 */ quad.vertices.v1 = {.pos = {.x = x, .y = y}, .col.u = color}; quad.vertices.v2 = {.pos = {.x = x, .y = (float)y+h}, .col.u = color}; quad.vertices.v3 = {.pos = {.x = (float)x+w, .y = (float)y+h}, .col.u = color}; quad.vertices.v4 = {.pos = {.x = (float)x+w, .y = y}, .col.u = color}; quad.vertices.v1.norm(640.0, 480.0); quad.vertices.v2.norm(640.0, 480.0); quad.vertices.v3.norm(640.0, 480.0); quad.vertices.v4.norm(640.0, 480.0); // triangle 1 quad.indices.i1 = 0; // v1 quad.indices.i2 = 1; // v2 quad.indices.i3 = 3; // v4 // triangle 2 quad.indices.i4 = 1; // v2 quad.indices.i5 = 2; // v3 quad.indices.i6 = 3; // v4 sdl::unmap_gpu_transfer_buffer(self.gpu, buf); GPUCommandBuffer* cmd = sdl::acquire_gpu_command_buffer(self.gpu); if (cmd == null) { io::eprintfn("failed to upload quad at acquiring command buffer: %s", sdl::get_error()); libc::exit(1); } GPUCopyPass* cpy = sdl::begin_gpu_copy_pass(cmd); // upload vertices sdl::upload_to_gpu_buffer(cpy, &&(GPUTransferBufferLocation){.transfer_buffer = buf, .offset = Quad.vertices.offsetof}, &&(GPUBufferRegion){.buffer = self.quad_buffer.vert_buf, .offset = 0, .size = Quad.vertices.sizeof}, false ); // upload indices sdl::upload_to_gpu_buffer(cpy, &&(GPUTransferBufferLocation){.transfer_buffer = buf, .offset = Quad.indices.offsetof}, &&(GPUBufferRegion){.buffer = self.quad_buffer.idx_buf, .offset = 0, .size = Quad.indices.sizeof}, false ); sdl::end_gpu_copy_pass(cpy); if (!sdl::submit_gpu_command_buffer(cmd)) { unreachable("failed to upload quads at submit command buffer: %s", sdl::get_error()); } sdl::release_gpu_transfer_buffer(self.gpu, buf); sdl::wait_for_gpu_idle(self.gpu); /* // now finally draw the quad // if we are not in a render pass then we can't render shit if (self.render_cmd == null) { unreachable("start rendering first before trying to render a quad"); } // FIXME: this could be done at the start of rendering GPUTexture* t; if (!sdl::wait_and_acquire_gpu_swapchain_texture(self.render_cmd, self.win, &t, null, null)) { unreachable("failed to acquire swapchain texture: %s", sdl::get_error()); } // TODO: begin render pass Pipeline* p = self.pipelines.get_from_name(shader_name); if (p == null) { unreachable("no pipeline named: %s", shader_name); } // bind the data sdl::bind_gpu_graphics_pipeline(self.render_pass, pipeline); sdl::bind_gpu_vertex_buffer(self.render_pass, 0, &&(GPUBufferBinding){.buffer = self.quad_buffer.vert_buf, .offset = 0}, 1 ); sdl::bind_gpu_index_buffer(self.render_pass, 0, &&(GPUBufferBinding){.buffer = self.quad_buffer.idx_buf, .offset = 0}, 1 ); sdl::draw_gpu_indexed_primitives(self.render_pass, 6, 1, 0, 0, 0); */ } // TODO: fn Renderer.draw_quad, it has to use a vertex buffer and an index buffer // TODO: fn Renderer.draw_sprite, same as draw_quad but also bind the texture // TODO: fn Renderer.begin_render // TODO: fn Renderer.end_render